An assessment of three variance estimators for the k-nearest neighbour technique
نویسندگان
چکیده
منابع مشابه
k-Nearest Neighbour Classifiers
Perhaps the most straightforward classifier in the arsenal or machine learning techniques is the Nearest Neighbour Classifier – classification is achieved by identifying the nearest neighbours to a query example and using those neighbours to determine the class of the query. This approach to classification is of particular importance today because issues of poor run-time performance is not such...
متن کاملA resampling variance estimator for the k nearest neighbours technique
Current estimators of variance for the k nearest neighbours (kNN) technique are designed for estimates of population totals. Their efficiency in small-area estimation problems can be poor. In this study, we propose a modified balanced repeated replication estimator of variance (BRR) of a kNN total that performs well in small-area estimation problems and under both simple random and cluster samp...
متن کاملAn empirical analysis of the probabilistic K-nearest neighbour classifier
The probabilistic nearest neighbour (PNN) method for pattern recognition was introduced to overcome a number of perceived shortcomings of the nearest neighbour (NN) classifiers namely the lack of any probabilistic semantics when making predictions of class membership. In addition the NN method possesses no inherent principled framework for inferring the number of neighbours, K, nor indeed assoc...
متن کاملConvergence of random k-nearest-neighbour imputation
Random k-nearest-neighbour (RKNN) imputation is an established algorithm for filling in missing values in data sets. Assume that data are missing in a random way, so that missingness is independent of unobserved values (MAR), and assume there is a minimum positive probability of a response vector being complete. Then RKNN, with k equal to the square root of the sample size, asymptotically produ...
متن کاملCONNECTIVITY OF RANDOM k-NEAREST-NEIGHBOUR GRAPHS
LetP be a Poisson process of intensity one in a squareSn of arean. We construct a random geometric graph Gn,k by joining each point of P to its k ≡ k(n) nearest neighbours. Recently, Xue and Kumar proved that if k ≤ 0.074 log n then the probability that Gn,k is connected tends to 0 as n → ∞ while, if k ≥ 5.1774 log n, then the probability that Gn,k is connected tends to 1 as n → ∞. They conject...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Silva Fennica
سال: 2013
ISSN: 2242-4075
DOI: 10.14214/sf.925